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GOALGOAL
Is to model their simple behaviors to �ndout about

more complex behaviors.
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HS ADVANTAGESHS ADVANTAGES
Quick convergence

Easy implementation

Less adjustable parameters

Fewer mathematical requirements

Generates a new solution, after considering all of
the existing solutions
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Free from the initialization of inputparameters

Free from computational complexity

Ease of understanding and implementation
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Premature converge

Complexity in calculation
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Automatical Subdivision

Ability of dealing with multimodality
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DISADVANTAGESDISADVANTAGES
Getting trapped into several local optima

Does not memorize or remember any history of
better situation for each �re�y and this causes
them to move regardless of its previous better

situation
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