SWARM INTELLIGENCE

Milad Abolhassani

Supervisor: Hamid Mir Vaziri

WHY?

WHAT KIND OF PROBLEMS?

WHAT KIND OF PROBLEMS? Optimization

WHAT KIND OF PROBLEMS? Optimization Modeling

WHAT KIND OF PROBLEMS? Optimization Modeling Simulation

OPTIMIZATION

MODELING

SIMULATION

OPTIMIZATION

EXHAUSTIVE SEARCH

OTHER METHODS

OTHER METHODS Analytical

OTHER METHODS Analytical Uninformed

OTHER METHODS Analytical Uninformed Informed

METAHEURISTIC

LOCAL & GLOBAL OPTIMUM

COMPLEX SPACES

EXPLORATION

EXPLOITATION

EXPLOITATION

CATEGORIES

SWARM

GOAL

Is to model their simple behaviors to findout about more complex behaviors.

SIGN BASED ALGORITHMS

1. Init memory

1. Init memory
2. Generate a solution

1. Init memory

2. Generate a solution

3. Calculate the fitness of generated solution

1. Init memory

2. Generate a solution

3. Calculate the fitness of generated solution4. Continue this for all population

1. Init memory

2. Generate a solution

3. Calculate the fitness of generated solution

4. Continue this for all population

5. Update signs memory

1. Init memory

2. Generate a solution

3. Calculate the fitness of generated solution

4. Continue this for all population

5. Update signs memory

6. Repeat until stop condition meets

Marco Dorigo (1992)

ACO

Marco Dorigo (1992) Finding good paths through graphs

HOW IT WORKS?

ACO ADVANTAGES

Search among a population in parallel Can give rapid discovery of good solutions

Can adapt to changes in graph

ACO ADVANTAGES

Search among a population in parallel Can give rapid discovery of good solutions Can adapt to changes in graph

ACO DISADVANTAGES Prone to stagnation Premature convergence Uncertain converge time Long calculation time Solutions might be far from optimum

IMITATION BASED ALGORITHMS

1. Init Parameters

1. Init Parameters
2. Init Population

1. Init Parameters
2. Init Population
3. Move Particles

Init Parameters
Init Population
Move Particles
Calculate the fitness

Init Parameters
Init Population
Move Particles
Calculate the fitness
Update particles memories

1. Init Parameters 2. Init Population 3. Move Particles 4. Calculate the fitness 5. Update particles memories 6. Repeat until stop condition meets

PSO ADVANTAGES

PSO ADVANTAGES Fast

PSO ADVANTAGES Fast Easy to implement

Fast Easy to implement No complex calculations

Fast Easy to implement No complex calculations Doesn't have so much parameters

PSO DISADVANTAGES

PSO DISADVANTAGES

Prone to premature convergence

LET'S HAVE A LOOK TO OTHER ALGORITHMS
HARMONY SEARCH

HARMONY SEARCH

HARMONY SEARCH Init Harmony Memory (RANDOM)

HARMONY SEARCH Init Harmony Memory (RANDOM) Improvise NEW harmony

HARMONY SEARCH Init Harmony Memory (RANDOM) Improvise NEW harmony If NEW is better than min(HM) HARMONY SEARCH Init Harmony Memory (RANDOM) Improvise NEW harmony If NEW is better than min(HM) Replace(min(HM), NEW)

HARMONY SEARCH Init Harmony Memory (RANDOM) Improvise NEW harmony If NEW is better than min(HM) Replace(min(HM), NEW) Loop till end condition meets

HARMONY SEARCH

HS ADVANTAGES Quick convergence Easy implementation Less adjustable parameters Fewer mathematical requirements Generates a new solution, after considering all of the existing solutions

HS DISADVANTAGES

Premature convergence

ICA

ICA

ICA PROS & CONS

PROS

Good speed

Same and better solutions compared with other metaheuristic algorithms

PROS

Good speed

Same and better solutions compared with other metaheuristic algorithms

CONS

Complex implementation

GWO

Mimics leadership hierachy of wolves

GWO HIERACHY

SOCIAL BEHAVIOR OF GREY WOLVES Tracking, chasing, and approaching the prey. Pursuing, encircling, and harassing the prey until it stops moving.

Attack towards the prey.

GWO

ENCIRCLING PREY

GWO

Creating a random population of grey wolves

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey

Each candidate solution updates its distance from the prey

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey

Each candidate solution updates its distance from the prey

The parameter a is decreased from 2 to 0 in order to emphasize exploration and exploitation

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey

Each candidate solution updates its distance from the prey

The parameter a is decreased from 2 to 0 in order to emphasize exploration and exploitation

Candidate solutions tend to diverge from the prey when j > 1 and converge towards the prey when A < 1

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey

Each candidate solution updates its distance from the prey

The parameter a is decreased from 2 to 0 in order to emphasize exploration and exploitation

Candidate solutions tend to diverge from the prey when j > 1 and converge towards the prey when A < 1

GW terminated by the satisfaction of an end criterion

GWO ADVANTAGES

Free from the initialization of inputparameters Free from computational complexity Ease of understanding and implementation

GSA

GSA

HOW DOES IT WORKS?

ADVANTAGES Easy implementation Fast convergence Low computational cost
DISADVANTAGES

Premature converge Complexity in calculation It is easy to fall into local optimum solution

FIREFLY

HUNTING

HYPOTHESES

HYPOTHESES

ADVANTAGES

Automatical Subdivision Ability of dealing with multimodality

DISADVANTAGES

Getting trapped into several local optima

Does not memorize or remember any history of better situation for each firefly and this causes them to move regardless of its previous better situation

IDEA

REFERENCES

Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm:harmony search. Simulation [2001]

A Mirjalili, Grey Wolf Optimizer [2014]

E Rashedi, GSA: A Gravitational Search Algorithm [2009]

Yang, X. S, Nature-Inspired Metaheuristic Algorithms [2008]

Yu Zhang, Immunity-Based Gravitational Search Algorithm [2012]

J Yang, An improved ant colony optimization(I-ACO) method for the quasi travelling salesman problem [2015]

M Mahdavi, An improved harmony search algorithmfor solving optimization problems [2007]

W Sun, An Improved Harmony Search Algorithm for Power Distribution Network Planning [2015]

Y Zhang, Improved Imperialist Competitive Algorithm for Constrained Optimization [2015]

D Guha, Load frequency control of large scale power system usingquasi-oppositional grey wolf optimization algorithm [2016]

N Naji, A Review of the Metaheuristic Algorithms and their Capabilities [2017]

Saibal K. Pal, Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization Problems [2012]