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GOAL

Is to model their simple behaviors to findout about
more complex behaviors.

17.



SIGN BASED ALGORITHMS
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1. Init memory
2. Generate a solution
3. Calculate the fitness of generated solution
4. Continue this for all population
5. Update signs memory

6. Repeat until stop condition meets
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18

.3



ACO

Marco Dorigo (1992)
Finding good paths through graphs
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HOW IT WORKS?
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ACO ADVANTAGES

Search among a population in parallel

Can give rapid discovery of good solutions

Can adapt to changes in graph
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ACO DISA

DVANTAGES

Prone to stagnation

Premature convergence

Uncertain converge time

Long calculation time

Solutions might be far from optimum
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Rosenbrock, PSO Iteration: 0
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Fast
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PS5O ADVANTAGES

Fast

Easy to implement
No complex calculations

Doesn't have so much parameters
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PSO DISADVANTAGES

Prone to premature convergence
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HARMONY SEARCH
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Init Harmony Memory (RANDOM)
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Init Harmony Memory (RANDOM)
Improvise NEW harmony
If NEW is better than min(HM)
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RMONY SEA

RCH

Init Harmony Memory (RANDOM)
Improvise NEW harmony
If NEW is better than min(HM)
Replace(min(HM), NEW)
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RMONY SEA

RCH

Init Harmony Memory (RANDOM)
Improvise NEW harmony
If NEW is better than min(HM)
Replace(min(HM), NEW)

Loop till end condition meets
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HS ADVANTAGES

Quick convergence

Easy implementation
Less adjustable parameters
Fewer mathematical requirements

Generates a new solution, after considering all of
the existing solutions
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Premature convergence
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ICA PROS & CONS




PROS

Good speed

Same and better solutions compared with other
metaheuristic algorithms
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PROS

Good speed

Same and better solutions compared with other
metaheuristic algorithms

CONS

Complex implementation
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GWO

Mimics leadership hierachy of wolves
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GWO HIERACHY
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SOCIAL BEHAVIOR OF GR

-Y WOLV

=S

Tracking, chasing, and approaching the prey.

Pursuing, encircling, and harassing the prey until it

stops moving.

Attack towards the prey.
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GWO

ENCIRCLING PREY
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ATTACK

23.

7



TOSUM UP:




TOSUM UP.

Creating a random population of grey wolves
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TOSUM UP.

Creating a random population of grey wolves

Alpha, beta, and delta wolves estimate the probable position of the prey
Each candidate solution updates its distance from the prey

The parameter a is decreased from 2 to 0 in order to emphasize
exploration and exploitation

Candidate solutions tend to diverge from the prey when j > 1 and
converge towards the prey when A< 1

GW terminated by the satisfaction of an end criterion
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GWO ADVANTAGES

Free from the initialization of inputparameters

Free from computational complexity

Ease of understanding and implementation

23.9



24 .






HOW DOES IT WORKS?



ADVANTAGES

Easy implementation
Fast convergence

Low computational cost




DISADVANTAGES

Premature converge

Complexity in calculation

It is easy to fall into local optimum solution
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FIREFLY




HUNTING










HYPOTHESES
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ADVANTAGES

Automatical Subdivision

Ability of dealing with multimodality
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DISADVANTAGES

Getting trapped into several local optima

Does not memorize or remember any history of
better situation for each firefly and this causes
them to move regardless of its previous better

situation

25.
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