

Design Pattern

Milad Abolhassani

tuxgeek.ir
milad@tuxgeek.ir

Slides:
http://slideshare.com/miladas
http://miladas.github.io/slides

mailto:milad@tuxgeek.ir

Attention 2

OOP

● Class
● Property
● Method
● Inheritance
● Polymorphism

● Interface
● Abstract class
● Encapsulation
● Public/protected/private
● Final

3

Where did all of these come from? 4

SOLID

SOLID

5

SOLID

● Single Responsibility
● Open/Closed
● Liskov substitution
● Interface Segregation
● Dependency Injection

6

Single Responsibility 7

Open/Closed

● Meyer's open/closed

– Once class completed, never should modified
● Polymorphic open/closed principle

– Interface (public methods)

– The interface is open for extension but close for modification

8

Liskov substitution

● Program to an interface rather than of it's implementation

● Design by contract

● Do not extend the interface

9

Interface Segregation 10

Dependency injection 11

What is design pattern?

● In software engineering, a design pattern is a general reusable
solution to a commonly occurring problem.

12

History

● Patterns originated as an architectural concept by Christopher
Alexander (1977/79).

● Design patterns gained popularity in computer science after the book
Design Patterns: Elements of Reusable Object-Oriented Software was
published in 1994.

– Gang of Four

– Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John

13

Gang of four 14

Why design pattern?

● Clarity

● Correctness

● Same vocabularies

– Avoid miss communications
● Reuse

● Save time, trial and error

● Can speed up the development process

– by providing tested, proven development paradigms
● We are not reusing code, we are reusing experience

15

Category

● Creational design patterns

● Structural design patterns

● Behavioral design patterns

16

Creational design patterns

● These design patterns provide a way to create objects while hiding the
creation logic.

17

Creational design patterns

● Factory method

● Singleton

● Prototype

● Builder

18

Factory Method 19

● Factory Method lets a class defer instantiation to
subclasses.

Singleton

● This pattern involves a single class which is responsible to create an
object while making sure that only single object gets created.

20

Prototype

● Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype.

21

Builder

● Separate the construction of a complex object from its representation
so that the same construction process can create different
representations.

22

Programmer 23

Structural design patterns

● These design patterns are all about Class and Object composition.
Concept of inheritance is used to compose interfaces and define ways
to compose objects to obtain new functionalities.

24

Structural design patterns

● Adapter

● Decorator

● Facade

● Flyweight

● Proxy

25

Adapter

● Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

26

Decorator

● Attach additional responsibilities to an object dynamically.

27

Decorator 28

Facade

● Wrap a complicated subsystem with a simpler interface.

29

Flyweight

● The Flyweight uses sharing to support large numbers of objects
efficiently.

30

Proxy

● Use an extra level of indirection to support distributed, controlled, or
intelligent access.

31

Behavioral design patterns

● These design patterns are all about Class's objects communication.
Behavioral patterns are those patterns that are most specifically
concerned with communication between objects.

32

Behavioral design patterns

● Chain of responsibility

● Mediator

● Observer

● State

● Strategy

● Template method

33

Chain of responsibility

● The Chain of Responsibility pattern avoids coupling the sender of a
request to the receiver by giving more than one object a chance to
handle the request.

34

● The Mediator defines an object that controls how a set of objects
interact. Loose coupling between colleague objects is achieved by
having colleagues communicate with the Mediator, rather than with
each other.

Mediator 35

Observer

● Observer pattern is used when there is one-to-many relationship
between objects such as if one object is modified, its depenedent
objects are to be notified automatically.

36

State

● The State pattern allows an object to change its behavior when its
internal state changes.

37

Strategy

● In Strategy pattern, a class behavior or its algorithm can be changed at
run time.

38

Template method

● The Template Method defines a skeleton of an algorithm in an
operation, and defers some steps to subclasses.

39

Thank you

References

– JavaWorld
– SourceMaking
– TutorialsPoint
– Informit
– geekswitblogs
– Wikipedia [1] [2]

http://www.javaworld.com/article/2077421/learn-java/abstract-classes-vs-interfaces.html
https://sourcemaking.com/design_patterns
http://www.tutorialspoint.com/design_pattern/index.htm
http://www.informit.com/articles/article.aspx?p=2044336
http://geekswithblogs.net/subodhnpushpak/archive/2009/09/18/the-23-gang-of-four-design-patterns-.-revisited.aspx
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Design_Patterns

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

