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OOP

● Class
● Property
● Method
● Inheritance
● Polymorphism

● Interface
● Abstract class
● Encapsulation
● Public/protected/private
● Final
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Where did all of these come from? 4



  

SOLID

SOLID
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SOLID

● Single Responsibility
● Open/Closed
● Liskov substitution 
● Interface Segregation
● Dependency Injection
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Single Responsibility 7



  

Open/Closed

● Meyer's open/closed

– Once class completed, never should modified
● Polymorphic open/closed principle

– Interface (public methods)

– The interface is open for extension but close for modification
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Liskov substitution 

● Program to an interface rather than of it's implementation

● Design by contract

● Do not extend the interface
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Interface Segregation 10



  

Dependency injection 11



  

What is design pattern?

● In software engineering, a design pattern is a general reusable 
solution to a commonly occurring problem.
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History

● Patterns originated as an architectural concept by Christopher 
Alexander (1977/79).

● Design patterns gained popularity in computer science after the book 
Design Patterns: Elements of Reusable Object-Oriented Software was 
published in 1994.

– Gang of Four

– Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John
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Gang of four 14



  

Why design pattern?

● Clarity

● Correctness

● Same vocabularies

– Avoid miss communications
● Reuse 

● Save time, trial and error

● Can speed up the development process

– by providing tested, proven development paradigms
● We are not reusing code, we are reusing experience
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Category

● Creational design patterns

● Structural design patterns

● Behavioral design patterns
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Creational design patterns

● These design patterns provide a way to create objects while hiding the 
creation logic.
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Creational design patterns

● Factory method

● Singleton

● Prototype

● Builder

18



  

Factory Method 19

● Factory Method lets a class defer instantiation to 
subclasses. 



  

Singleton

● This pattern involves a single class which is responsible to create an 
object while making sure that only single object gets created.
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Prototype

● Specify the kinds of objects to create using a prototypical instance, and 
create new objects by copying this prototype.
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Builder

● Separate the construction of a complex object from its representation 
so that the same construction process can create different 
representations.
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Programmer 23



  

Structural design patterns

● These design patterns are all about Class and Object composition. 
Concept of inheritance is used to compose interfaces and define ways 
to compose objects to obtain new functionalities.
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Structural design patterns

● Adapter

● Decorator

● Facade

● Flyweight

● Proxy
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Adapter

● Convert the interface of a class into another interface clients expect. 
Adapter lets classes work together that couldn't otherwise because of 
incompatible interfaces.
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Decorator

● Attach additional responsibilities to an object dynamically.
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Decorator 28



  

Facade

● Wrap a complicated subsystem with a simpler interface.
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Flyweight

● The Flyweight uses sharing to support large numbers of objects 
efficiently. 
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Proxy

● Use an extra level of indirection to support distributed, controlled, or 
intelligent access.
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Behavioral design patterns

● These design patterns are all about Class's objects communication. 
Behavioral patterns are those patterns that are most specifically 
concerned with communication between objects.
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Behavioral design patterns

● Chain of responsibility

● Mediator

● Observer

● State

● Strategy

● Template method
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Chain of responsibility

● The Chain of Responsibility pattern avoids coupling the sender of a 
request to the receiver by giving more than one object a chance to 
handle the request. 
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● The Mediator defines an object that controls how a set of objects 
interact. Loose coupling between colleague objects is achieved by 
having colleagues communicate with the Mediator, rather than with 
each other.

Mediator 35



  

Observer

● Observer pattern is used when there is one-to-many relationship 
between objects such as if one object is modified, its depenedent 
objects are to be notified automatically.
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State

● The State pattern allows an object to change its behavior when its 
internal state changes.
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Strategy

● In Strategy pattern, a class behavior or its algorithm can be changed at 
run time.
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Template method

● The Template Method defines a skeleton of an algorithm in an 
operation, and defers some steps to subclasses.
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Thank you
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