
An Introduction to Python
Professor: Dr Abas Bahrololom

Milad Abolhassani
Asgar Jangah

1

Index

▶ Introduction
▶ Developer
▶ Python naming
▶ Why Python
▶ Supported platforms
▶ Some charts
▶ Comparing Syntaxes
▶ Python vs Matlab
▶ Where Python is being used?
▶ Python 2 vs Python 3

2

▶ Installation guide
▶ IDE
▶ SheBang
▶ Data Types and operators
▶ Statements
▶ OOP
▶ Introducing to some

libraries
▶ What’s next

Introduction

Python is a general purpose programming language which is
commonly used for both standalone programs and scripting
applications in a wide variety of domains, and is generally
considered to be one of the most widely used programming
languages in the world.

▶ Programming and Scripting
▶ General-purpose (Variety of domains)
▶ Free software
▶ Object-oriented

3

Introduction

▶ Scripting languages
▶ All scripting languages are programming languages
▶ Scripting languages do not require the compilation step and

are rather interpreted

▶ Applications (sample scripts GH,AU):
▶ To automate certain tasks in a program
▶ Text processing and extracting information from a data set
▶ Standalone?

▶ Python also can be compiled
▶ bytecode [c]

4

https://github.com/ravexina/restore-bin
https://askubuntu.com/search?tab=votes&q=user%3a264781%20[text-processing]

Developer

▶ Python's origins lie way back in distant December 1989.
Created by Guido van Rossum.

▶ Started as a 'Hobby' programming project that would keep him
occupied during the week around Christmas as his office was
closed.

5

History of Python naming

▶ Often people assume that the name Python was written after a snake. Even the logo of
Python programming language depicts the picture of two snakes, blue and yellow. But,
the story behind the naming is somewhat different.

▶ Back in the 1970s, there was a popular BBC comedy TV show called Monty Python’s Fly
Circus and Van Rossum happened to be the big fan of that show. So when Python was
developed, Rossum named the project ‘Python’.

6

▶ Easy to learn
▶ Elegant Syntax
▶ Easy to run
▶ Healthy, Active and Supportive Community
▶ Amazing Libraries
▶ Awesome Package Manager
▶ Free Software (LIB, Usage)

▶ Copyright

▶ General Purpose
▶ Useful for a really broad range of programming tasks from

little shell scripts to enterprise web applications to scientific
uses.

7Why Python?

Why Python? 8

▶ Python is the future of AI and Machine learning
▶ Scikit-learn (Machine learning)

▶ Keras (Neural network)

▶ TensorFlow (ML, NN)

▶ Fast, Well designed, Portable, Scalable
▶ These are the most important factors for AI applications

▶ Most popular and widely used deep-learning frameworks
are implemented in Python

▶ Lots of data structures, interpretive run-time
▶ Prototypes algorithms quickly

Why Python? 9

▶ Spend more time on the algorithms instead of learning
the tool and it’s interface.

● This page attempts to collect information and links pertaining to
the practice of AI and Machine Learning in python:

● https://wiki.python.org/moin/PythonForArtificialIntelligence

● Role of Python in Artificial Intelligence:

● http://www.cuelogic.com/blog/role-of-python-in-artificial-in
telligence/

Supported Platforms

▶ Python programs run on most platforms
▶ Linux

▶ Unix

▶ Mac

▶ Windows

▶ etc.

10

Popular Languages of 2016 11

12TIOBE Index

13TIOBE Index

Compare Syntax

java
public class MyFirstJavaProgram {
/* This is my first java program. * This will print
'Hello World' as the output */
public static void main(String []args) {
System.out.println("Hello World");
// prints Hello World
 }
}

14

C
#include <stdio.h>
 int main()
{
/* my first program in C */
printf("Hello, World! \n");
return 0;
}

C++
// my first program in C++
#include <iostream>
int main()
 {
std::cout << "Hello World!";
return 0;
}

Compare Syntax

C#
using System;
 namespace HelloWorldApplication
{
 class HelloWorld
 {
 static void Main(string[] args)
 {
 /* my first program in C# */
 Console.WriteLine("Hello World");
 Console.ReadKey();
 }
 }
}

15

Python
Print (“Hello world!”)V

S

Python vs Matlab

▶ More compact and readable than Matlab code.

▶ there is no end

▶ like all languages Python uses [] for indexing and () for calls

▶ Matlab uses () for both. hard to understand.

▶ Python NumPy's array methods min, max, mean, etc.
operate by default on all dimensions of an array.

▶ Matlab = mean(mean(mean(mean(x))));

▶ Python = mean(x)

▶ Python does not arbitrarily restrict the use of literals in
expressions [c]

▶ Python data structures are superior to Matlab data structures.

16

https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html

Python vs Matlab
▶ Python follows standards

▶ Like almost every programming language other than

Matlab, Python uses zero-based indexing

▶ Programmers who must implement published algorithms,

convert code from one language to another

▶ Python offers excellent support for dictionaries (hashes) [c]

▶ Matlab provides support for dictionaries (these are

called hash maps in Matlab terminology), but imposes

the pointless restriction that all keys have the same type

▶ OOP in Python is simple and elegant

▶ Python is free and open.
● http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html

17

Where Python is being used?

▶ Applications
▶ Web Applications
▶ Package management
▶ Video Games
▶ Web Frameworks
▶ Graphics Frameworks
▶ UI Frameworks
▶ Scientific packages
▶ Mathematical Libraries
▶ Numerical Libraries
▶ Development Packages
▶ Different Implementations

18

▶ UI Frameworks
▶ Tkinter

▶ Kivy

▶ PyQT

▶ PyGTK

▶ Web Frameworks
▶ Django

▶ Flask

▶ Tornado

▶ Video Games
▶ Civilization IV

▶ Battlefield 2

19Where Python is being used?

▶ Applications
▶ DropBox

▶ BitTorrent

▶ Bazaar

▶ OpenStack

▶ Web services
▶ Reddit

▶ Youtube

▶ Web Applications
▶ Mailman (mail list)

▶ Roundup (bug tracking
system)

20Where Python is being used?

Python 2

▶ Python 2.0 - October 16, 2000

▶ Python 2.1 - April 17, 2001

▶ Python 2.2 - December 21, 2001

▶ Python 2.3 - July 29, 2003

▶ Python 2.4 - November 30, 2004

▶ Python 2.5 - September 19, 2006

▶ Python 2.6 - October 1, 2008

▶ Python 2.7 - July 3, 2010

Python 3

▶ Python 3.0 - December 3, 2008

▶ Python 3.1 - June 27, 2009

▶ Python 3.2 - February 20, 2011

▶ Python 3.3 - September 29, 2012

▶ Python 3.4 - March 16, 2014

▶ Python 3.5 - September 13, 2015

▶ Python 3.6 - May 30, 2016

21Versions

PYTHON 2 VS PYTHON 3
▶ Python 2.x is legacy, Python 3.x is the present and future of the

language
▶ Clean up Python 2.x properly, with less regard for backwards

compatibility

22

PYTHON 2 VS PYTHON 3

▶ Use Python 2 if:
▶ An environment you don't control

▶ If you want to use a specific third party package

▶ The real difference for someone new to python [c]:
▶ Print

▶ Division

▶ Input

▶ Amount of libraries (Not anymore)

▶ Different modules and functions

23

How to download and install

▶ The Python download requires about 30 Mb of disk space And When
installed, Python requires about an additional 90 Mb of disk space.

● https://www.python.org/downloads

24

How to download and install

▶ The file named python-3.6.4.exe should start downloading into your
standard download folder. This file is about 30 Mb so it might take a
while to download fully if you are on a slow internet connection.

▶ After download , go to the location of file.

25

Installation

▶ Double-click the icon labeling the file python-3.6.4.exe.
▶ An Open File - Security Warning pop-up window will appear.

26

▶ Click Run.
▶ A Python 3.6.4 (32-bit) Setup pop-up window will appear.

27Installation

▶ Ensure that the Install launcher for all users (recommended) and
the Add Python 3.6 to PATH checkboxes at the bottom are checked.

▶ If the Python Installer finds an earlier version of Python installed on
your computer, the Install Now message will instead appear
as Upgrade Now (and the checkboxes will not appear).

28Installation

▶ Highlight the Install Now (or Upgrade Now) message, and then click it.
▶ A User Account Control pop-up window will appear, posing the

question Do you want the allow the following program to make
changes to this computer?

▶ Click the Yes button.

29Installation

▶ A new Python 3.6.4 (32-bit) Setup pop-up window will appear
with a Setup Progress message and a progress bar.

30Installation

▶ During installation, it will show the various components it is installing and
move the progress bar towards completion. Soon, a new Python 3.6.4
(32-bit) Setup pop-up window will appear with a Setup was
successfully message.

▶ Click the Close button.

31Installation

Verifying
▶ Navigate to the

directory C:\Users\Pattis\AppData\Local\Programs\Python\Python36-32 (or to whatever
directory Python was installed: see the pop-up window for Installing step 3).

▶ Double-click the icon/file python.exe.The following pop-up window will appear.

32

A pop-up window with the
title C:\Users\Pattis\AppData\Local\Programs\Python\Python36-32 appears, and inside the
window; on the first line is the text Python 3.6.4 ... (notice that it should also say 32 bit). Inside the
window, at the bottom left, is the prompt >>>: type exit() to this prompt and press enter to
terminate Python.

You should keep the file python-3.6.4.exe somewhere on your computer in case you need to
reinstall Python (not likely necessary).

Other solutions
▶ Docker
▶ Anaconda

33

▶ Anaconda
▶ Anaconda is an open source distribution of the Python and R

programming languages for large-scale data processing and
scientific computing, that aims to simplify package management
and deployment.

▶ Package versions are managed by the package management
system conda.

● https://www.anaconda.com/download

34Anaconda

Anaconda 35

Virtualization [1] 36

https://github.com/ravexina/linux-notes/blob/master/Virtualization%20A.ipynb

Docker 37

https://djangostars.com/blog/what-is-docker-and-how-to-use-it-with-python/

What are Containers?

https://aws.amazon.com/what-are-containers/

IDE

▶ IDE is an Integrated Development Environment
▶ Multi-window text editor

▶ Syntax highlighting

▶ Auto completion

▶ Smart indenting

▶ Debugger

38

▶ Some IDE for Python:
▶ eclipse (PyDev)

▶ PyCharm

▶ Visual Studio 17

▶ Atom (Editor)

▶ VIM (More than of an editor)

▶ Jupyter Notebook (Not an IDE)

39IDE

PyCharm
40

Visual Studio
41

Control Panel > Programs and Features, selecting Microsoft Visual Studio 2015 and then
Change.Modify - Programming Languages > Python Tools for Visual Studio and then Next.

Visual Studio
42

#!

#!/usr/bin/env python
#!/usr/bin/python
#!/usr/local/bin/python

43

▶ User-defined names start with a letter or underscore (_),
followed by any number of letters, digits, or underscores.

▶ User-defined names cannot be the same as any Python
reserved word

▶ User-defined names and reserved words are always case
sensitive

44Naming rules [c]

None continue for lambda return
False class finally is try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass break
except in raise -

45Reserved words

▶ A language is dynamically typed if the type is associated
with run-time values [c]

▶ This means that you as a programmer can write a little
quicker because you do not have to specify types every
time
▶ Perl, Python, Ruby, PHP, JavaScript

46Python is a dynamically typed language
[c]

Data Types

▶ Numbers
▶ Strings
▶ Lists
▶ Dictionaries
▶ Tuples
▶ Files
▶ Sets

47

Data types (Numbers)[c]

Numbers are immutable (unchangeable) values,
supporting numeric operations.

▶ Integers
▶ 1234, −24, +42, 0

▶ Float
▶ 1.23, 3.14e-10

▶ Octal, hex, and binary
▶ 0o177, 0x9ff, 0b1111

▶ Complex numbers.
▶ 3+4j, 3.0+4.0j, 3J

48

▶ int(9.1)

▶ int('-9')

▶ int('0b1111', 0)

▶ float(9)

▶ float('1e2')

▶ float('-.1')

49Data types (Numbers)

Operator Description

X + Y Add
X − Y subtract
X * Y Multiply
X / Y divide
X // Y floor
X % Y remainder
X ** Y X to the power Y

50Math Operators [c]

The normal str string object is an immutable (unchangeable)
sequence of characters accessed by offset (position).

▶ 'Python"s', "Python's"
▶ Single and double quotes work the same, and each can

embed unescaped quotes of the other kind.

▶ """This is a multiline block"""
▶ Triple-quoted blocks collect multiple lines of text into a single

string, with end-of-line markers (\n) inserted between the
original quoted lines.

51Data types (Strings)

Lists are mutable (changeable) sequences of object references
accessed by offset.

▶ []
▶ An empty list.

▶ [0, 1, 2, 3]
▶ A four-item list: indexes 0 through 3.

▶ L = ['spam', [42, 3.1415], 1.23, {}]

▶ Nested sublists: L[1][0] fetches 42.

52Data types (List) [c]

▶ L = list('spam')
▶ Creates a list of all items in any iterable, by calling the type

constructor function.

▶ L = [x ** 2 for x in range(9)]
▶ Creates a list by collecting expression results during iteration.

53Data types (List)

▶ L.append(X)
▶ Inserts the single object X at the end of L, changing

the list in-place.

▶ L.sort(key=None, reverse=False)
▶ Sorts L in-place, in ascending order by default.

▶ L.reverse()
▶ Reverses items in L in-place.

▶ L.index(X)
▶ Returns the index of the first occurrence of object X

in L; raises an exception if not found.

54Data types (List Operators)

▶ L.insert(i, X)
▶ Inserts single object X into L at offset I

▶ L.count(X)
▶ Returns the number of occurrences of X in L.

▶ L.remove(X)
▶ Deletes the first occurrence of object X from L;

▶ L.pop([i])
▶ Deletes and returns the last (or offset i) item in L.

▶ L.clear()
▶ Removes all items from L.

55Data types (List Operators)

Dictionaries are mutable (changeable) mappings of object
references accessed by key (not position).

▶ {}
▶ An empty dictionary (not a set).

▶ {'spam': 2, 'eggs': 3}
▶ A two-item dictionary: keys 'spam' and 'eggs', values 2 and 3

▶ D = {'info': {42: 1, type(''): 2}, 'spam': []}
▶ Nested dictionaries: D['info'][42] fetches 1.

56Data types (Dictionaries) [c]

▶ D.keys()

▶ All keys in D.

▶ D.values()

▶ All stored values in D.

▶ D.items()

▶ A tuple like view of(key, value)

▶ D.clear()

▶ Removes all items from D.

▶ ‘K’ in D

▶ Returns True if D has a key K, or False otherwise

57Data types (Dictionaries Operations)

Data Types (Tuples) [c]

Tuples are immutable (unchangeable) sequences of object
references

▶ ()
▶ An empty tuple.

▶ (0)
▶ A one-item tuple

▶ (0, 1, 2, 3)
▶ A four-item tuple.

▶ T = ('spam', (42, 'eggs'))
▶ Nested tuples: T[1][1] fetches 'eggs'.

58

▶ T.index(X)
▶ Returns the index of the first occurrence of object X in tuple T;

▶ T.count(X)
▶ Returns the number of occurrences of X in tuple T.

▶ PS:
▶ Tuples are faster than list

▶ It makes your code safer if you “write-protect” data that does
not need to be changed.

59Data Types (Tuples Operations)

The built-in open() function creates a file object, the most common

interface to external files.

▶ Input files
▶ infile = open(filename, 'r')

▶ Creates input file object, connected to the named external file. filename is
normally a string (e.g., 'data.txt'), and maps to the current working directory
unless it includes a directory path prefix (e.g., r'c:\dir\data.txt').

▶ Argument two gives file mode: 'r' reads text.

▶ infile.read()
▶ Reads entire file, returning its contents as a single string. In text mode ('r'),

line-ends are translated to '\n' by default.

60Data Types (Files) [c]

▶ Output files
▶ outfile = open(filename, 'w')

▶ Creates output file object, connected to external file named by
filename (defined in the preceding section). Mode 'w‘ writes text

▶ outfile.write(S)
▶ Writes all content in string S onto file, with no formatting applied. In text

mode, '\n' is translated to the platform specific line-end marker
sequence by default.

▶ file.close()
▶ Manual close to free resources

61Data Types (Files)

▶ Sets [c]

▶ Sets are mutable (changeable) and unordered collections of
unique and immutable objects. Sets support mathematical set
operations such as union and intersection.

▶ Boolean
▶ The Boolean type, named bool, provides two predefined

constants added to the built-in scope, named True and False.

62Other data types

Converter Converts from Converts to

list(X) String, tuple, any iterable List

tuple(X) String, list, any iterable Tuple

int(S [, base]) String or number Integer, float

float(S) String or number Integer, float

str(X) Any Python object String

hex(X) Integer types Hexadecimal

oct(X) Integer types octal

63Convertors

Operator Description
X < Y Less than
X <= Y Less than or equal to
X > Y Greater than
X >= Y Greater than or equal to
X == Y Equal to (same value)
X != Y Not equal to
X is Y Same object
X is not Y Negated object identity
X < Y < Z Chained comparisons
not X If X is false then True; else, False
X or Y If X is false then Y; else, X
X and Y If X is false then X; else, Y

64Comparison/Boolean operators

Statements And Syntax

▶ Control flow
▶ Statements execute sequentially, one after another, unless

control-flow statements are used to branch elsewhere in code.

▶ Blocks
▶ A nested block is delimited by indenting all of its statements by the

same amount, with any number of spaces or tabs used consistently.

▶ Statements
▶ A statement ends at the end of a line, but can continue over multiple

lines if a physical line ends with a \; an unclosed (), [], or {} pair; or an
unclosed, triple-quoted string.
Multiple simple statements can appear on a single line if they are
separated with a semicolon (;).

65

▶ Comments
▶ Comments start with a # in any column (and not in a string

constant) and span to the end of the line; they are ignored
by the Python interpreter.

▶ Whitespace
▶ Generally significant only to the left of code, where

indentation is used to group blocks. Blank lines and spaces
are otherwise ignored and optional except within string
constants.

66Statements And Syntax

▶ The Assignment Statement
▶ The print Statement
▶ The if Statement
▶ The while Statement
▶ The for Statement
▶ The break Statement
▶ The continue Statement
▶ The del Statement
▶ The def Statement

67

• The return Statement

• The global Statement

• The pass Statement

• The import Statement

• The from Statement

• The class Statement

• The tray Statement

Statements

▶ target = expression
▶ target1 = target2 = expression
▶ target1, target2 = expression1, expression2
▶ target1 += expression

68

X += Y X &= Y X −= Y X |= Y

X *= Y X ^= Y X /= Y X >>= Y

X %= Y X <<= Y X **= Y X //= Y

The assignment statement

Any sequence of values may be assigned to any sequence
of names
Example :

>>> a, b, c, d = [1, 2, 3, 4]

>>> a, d

(1, 4)

69Sequence assignment

The starred name collects all otherwise unmatched items in
a new list

Example :

>>> a, *b = [1, 2, 3, 4]

>>> a, b

(1, [2, 3, 4])

70

>>> a, *b, c = (1, 2, 3, 4)
>>> a, b, c
(1, [2, 3], 4)

Extended sequence assignment [c]

print([value [, value]*] [, sep=str] [, end=str] [, file=object])

▶ sep
▶ A string to place between values (default is space: ' ').

▶ end
▶ A string to place at the end of the text printed (default is

newline: '\n').
▶ file

▶ The file-like object to which text is written (default is standard
output: sys.stdout).

71Print statement

The if statement selects from among one or more actions

if test:
suite

[elif test:
suite]*

[else:
suite]

72The if statement

There should be one — and preferably only one — obvious way to do it.

● https://wiki.python.org/moin/TOOWTDI

73There is no switch statement

74Perl REGEX

▶ The while loop is a general loop that keeps running the first
suite while the test at the top is true. It runs the optional else
suite once on exit if the loop ends without running into a break
statement in the first suite.

while test:
suite

[else:
suite]

75The while statement

The for loop is a sequence (or other iterable) iteration that assigns
items in iterable to target and runs the first suite for each. The for
statement runs the optional else suite once on exit if the loop
ends without running into a break statement in the first suite.

for target in iterable:
suite

[else:
suite]

76The for statement [c]

This immediately exits the closest enclosing while or for loop
statement, skipping its associated else (if any).

break

77The break statement

This immediately goes to the top of the closest enclosing while or
for loop statement

continue

78The continue statement

This is a do-nothing placeholder statement, and is used when
syntactically necessary

pass

>>> help(‘pass’)

It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed

79The pass statement

The del statement deletes variables, items, keys, and attributes.

name is a variable.

del name

del name[i]

80The del statement [c]

The def statement makes new functions, which may also serve as
methods in classes.

def name([arg,... arg=value,... *arg, **arg]):
suite

81

arg arg=value *arg **arg
Matched by name
or position

Default value if
name is not passed

Collects extra
positional
arguments as new
tuple name

Collects extra
keyword arguments
as a new
dictionary name

The def statement [c]

The return statement exits the enclosing function and returns an
expression value as the result of the call to the function. If
expression is omitted, it defaults to None, which is also the default
return value for functions that exit without a return.

Hint: return a tuple for multiple-value function results.

82The return statement

The global statement is a namespace declaration:

When used inside a class or function definition statement, it
causes all appearances of name in that context to be treated
as references to a global variable of that name.

Whether name is assigned or not, and whether name already
exists or not.

This statement allows globals to be created or changed within
a function or class.

83The global statement [c]

The import statement provides module access: it imports a
module as a whole.

import [package.]* module [as name]

84The import statement

The from statement imports a module just as in the import
statement (see the preceding section), but also copies variable
names from the module to be used without qualification

from [package.]* module import name [as othername]

85The from statement [c]

The try statement catches exceptions. try statements can specify
except clauses with suites that serve as handlers for exceptions
raised during the try suite; else clauses that run if no exception
occurs during the try suite; and finally clauses that run whether an
exception happens or not.

86The try statement [c]

Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects", which may contain data, often
known as attributes; and code, in the form of procedures, often known
as methods.
PS: Paradigms are concerned mainly with the way that code is organized.

▶ Encapsulation
▶ insists that you think about what you expose to the outside

world, it lets you change the implementation of an object
without affecting any other code.

▶ Inheritance
▶ it lets you write a set of functions, then expand them in

different direction without changing or copying them in any
way.

▶ Polymorphism
▶ it allows you to have many different functions, all with the

same name, all doing the same job, but on different data.

87

88Object-Oriented Programming

The Class Statement [c]

class name [(super [, super]* [, metaclass=M])]:
suite

89

https://wiki.python.org/moin/DatabaseInterfaces

Databases 90

Usable libraries

 NumPy [c]

▶ Provides support for large, multi-dimensional arrays

▶ We can express images as multi-dimensional arrays

▶ Representing images as NumPy arrays is not only computational

and resource efficient, but many other image processing and

machine learning libraries use NumPy array representations as well

▶ Furthermore, by using NumPy’s built-in high-level mathematical

functions, we can quickly perform numerical analysis on an

Matrix/Images

● http://www.numpy.org/

91

http://www.numpy.org/

 SciPy

▶ SciPy is a Python-based ecosystem of open-source software for

mathematics, science, and engineering.

▶ SciPy contains modules for optimization, linear algebra, integration,

special functions, FFT, signal and image processing and other tasks

common in science and engineering.

92Usable libraries

matplotlib [c]

▶ Matplotlib is a plotting library.

▶ Matplotlib tries to make easy things easy and hard things possible.

▶ You can generate plots, histograms, bar charts, etc. with just a few

lines of code.

93Usable libraries

94Usable libraries

https://lectures.quantecon.org/py/matplotlib.html

 PIL (Python Image Library)

▶ Provides general image handling and lots of useful basic
image operations like resizing, cropping, rotating, color
conversion and much more. With PIL you can read images
from most formats and write to the most common ones.

95Usable libraries

 OpenCV

▶ OpenCV comes with functions for reading and writing images
as well as matrix operations and math libraries.

▶ Mainly aimed at real-time computer vision.
▶ https://en.wikipedia.org/wiki/OpenCV#Applications

▶ Videos

96Usable libraries

https://en.wikipedia.org/wiki/OpenCV#Applications

 H5PY

▶ h5py package is a Pythonic interface to the HDF5 binary data
format.
▶ It lets you store huge amounts of numerical data, and easily

manipulate that data from NumPy.

▶ For example, you can slice into multi-terabyte datasets stored on
disk, as if they were real NumPy arrays.

▶ Thousands of datasets can be stored in a single file, categorized
and tagged however you want.

▶ The h5py library is the de-facto standard in Python to store
large numerical datasets.

● http://docs.h5py.org/en/latest/quick.html

97Usable libraries

98Boolean retrieval

Future

Python's user base is vast and growing - it's not going away any
time soon.

Utilized by the likes of Nokia, Google, and even NASA for it's easy
syntax.
Its support of multiple programming paradigms, including object-
oriented Python programming, functional Python programming,
and parallel programming models makes it a highly adaptive
choice.

99

Books 100

Books 101

References

▶ Websites:

▶ https://docs.python.org

▶ https://wiki.python.org

▶ Books:

▶ Python Pocket Reference (5th ed) [Lutz 2014-02-09]

▶ Programming Computer Vision, Jan Erik Solem ,[2012 Jan]

102

Mail: milad@eng.uk.ac.ir
Web: tuxgeek.ir
Github: Github.com/Ravexina
Stack: Stackexchange.com/users/4177764

Milad Abolhasani

Email : a_Jangah@eng.uk.ac.ir
Github: Github.com/asgarjangah

Asgar Jangah

Department of Computer Engineering, Shahid Bahonar University of Kerman

103

 Mr. Afzalipour

 Within Today, Maybe tomorrow might be too late …

